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Abstract —Strain-localization instabilities due to strain-softening which result from distributed
damage such as cracking in heterogeneous brittle materials are analysed. Attention is restricted to
the stability problem of equilibrium states. This problem is not equivalent to bifurcation of the
equtlibrium path. which may occur before stability of equilibrium is lost. The continuum is local
but is enhanced by the localization limiter used in the crack band model, consisting of a lower
bound on the minimum dimension of the strain-localization region, which is regarded as a material
property. Presented are derivations of the critical state conditions for localization of initially uniform
strain into ellipsoidal domains within an infinite continuum and into a planar band within a layer
of finite thickness. These derivations are simpler than the previous Bazant's derivations of the
general stability conditions for these localizations. A numerical parameter study of the critical states
is made for a broad range of material propertics as well as various initial stress states and relative
sizes of the strain-softening region. The material is deseribed by Drucker -Prager plasticity with
strain-softening that is caused by yield limit degradation. The flatter the cllipsoidal donutin, or the
larger the size of the body (layer thickness), the smaller is found to be the strain-softening slope
magnitude at which the critical state is reached. A softening Drucker -Prager material is found to
be stable against planar-band localizations in infinite continuum for a certain range of softening
malterial parameters,

INTRODUCTION

Distributed damage such as cracking or void growth can be macroscopically described as
strain-softening, a behavior in which the stress declines at increasing strain, or more precisely
the matrix of incremental elastic moduli ceases to be positive definite. Strain-softening
causes the strain as well as the energy dissipation to localize. This localization represents a
stability problem.

For onc-dimensional localization that describes the tensile or compressive failure of a
uniaxially stressed bar as well as the development of a planar localization band (e.g. crack
band) in infinite space, the stability conditions in terms of the strain-softening propertics
of the material were derived in a 1974 report and a follow-up paper by Bazant (1976). From
this stability analysis it transpired that, in the usual local continuum, the strain as well as
the energy dissipation localize into a region of zero volume. This implies the structure to
fail with a zero cencrgy dissipation and the failure to occur right after the first onset of
localization. This would indicate every strain-softening state to be unstable and therefore
unobservable. In reality, structures of course fail with a finite energy dissipation and strain-
softening states in which the energy dissipation is not localized to a zero volume do exist,
as evidenced ¢.g. by measurements of the locations of sound emission sources.

The simplest remedy that climinates this physically unrealistic situation is to impose a
lower bound on the minimum cross-section dimension of the strain-softening region. This
ad hoc measure was introduced by Bazant (1976) in the finite element crack band model,
and was subsequently developed first for sudden softening (Bazant and Cedolin, 1979,
1980) and later for gradual softening (Bazant, 1982 ; Bazant and Oh, 1983). The last version
has been shown to be in good agreement with all the basic concrete fracture data, and to
exhibit the correct size effect. which is transitional between the size effect of plastic limit
analysis and the size effect of linear elastic fracture mechanics. The crack band model has
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further been refined and implemented in some large finite element codes (de Borst, 1984;
de Borst and Nauta, 1984, 1985 Darwin. 1985 : Bazant, 1986). It will therefore be assumed
in this study that strain-softening cannot localize into a region whose minimum cross-
section dimension is less than a certain characteristic length A, which is considered to be a
material property.

The strain localization instability was explained and analyzed in 1974 by Bazant (1976)
for one-dimensional strain-softening in bars of infinite or finite length with rigid or elastic
supports, as well as for flexural softening in beams: see also Bazant's (1986) review.
Rudnicki and Rice (1975) formulated the condition of localization into a planar band in
an infinite space (see also Rice. 1976). This condition turned out to be identical to the
conditions of uniqueness and of shear band formation, previously obtained by Hill (1962)
(see also Mandel. 1966 and Mroz, 1966). The study of Rudnicki and Rice (1975) was
focused primarily on localization instabilities caused by geometrically nonlinear effects of
strain. which they showed to be possible already before the peak of the stress—strain diagram
(i.e. in the plastic-hardening range). However, some critical states were also obtained for
negative values of the plastic-hardening modulus, i.e. in the softening range. These studies,
which were restricted to nonassociated Drucker-Prager plasticity, in some cases enhanced
with a vertex hardening term, did not consider bodies of finite dimensions for which the
size of the localization region usually has paramount influence on the critical state, and did
not generally treat unloading outside the localization band, which is essential for the
loss of stability in finite bodies. Subsequently, Rudnicki (1977) studied localization into
ellipsoidal regions in a uniformly stressed infinite space and showed examples of such
instabilitics in the hardening as well as softening regime. This study was also limited to
nonassociated Drucker-Prager plasticity (without or with a vertex hardening term), and
dealt only with the critical state of ncutral equilibrium while stability was not analyzed.

Recently Bazant (19884, b) formulated in a closed form the conditions of critical state
as well as stability for the localization of strain-softening into planar bands or ellipsoidal
regions. This study included formulation of the stability conditions for strain-softening
tocalization into a planar band that forms within a layer of finite thickness. These stability
conditions allowed for completely general material properties characterized by arbitrary
tensors of incremental moduli for loading and unloading (with gencral anisotropy), which
makes it possible to determine the important effect of the type of constitutive law on these
instabilitics. The numerical examples, however, dealt only with the special case of isotropic
incremental elastic moduli tensors, which is simple to treat but of course not too realistic.

Our objective will be to apply these previously derived stability conditions assuming
more realistic, incrementally anisotropic material properties based on Drucker-Prager plas-
ticity (Fung, 1965 ; Owen and Hinton, 1980; Chen, 1982). At the same time, we will present a
direct derivation of the conditions of critical state (stability limit) which is considerably
simpler than the previous derivation of the stability conditions. Compared to the work of
Rudnicki and Rice (1975) and Rice (1976), the present study as well as the preceding ones
by Bazant (19881, b) extends the localization condition to arbitrary constitutive laws and
to bodics of finite dimensions for which unloading is important and the body size matters.

[t needs to be emphasized that, as in Bazant’s (19884, b) preceding study, the present
study deuls only with the critical state of the loss of stability of equilibrium, and not with
bifurcation of the equilibrium path as the load is increased. The problems of stability loss
and bifurcation are not cquivalent. For uniaxially stressed bars or planar localization bands,
the critical state for stability differs from the state of bifurcation (BaZant, 1988¢c). More
dctailed comments on this subject will be made fater in this paper.

To avoid localization of encrgy dissipation into a region of zcro volume, one generally
needs to introduce the so-called localization limiters (BaZant and Belytschko, 1987). The
imposition of a lower bound on the size of this region, adopted in this study, is the simplest
but crudest localization limiter. Limitation of localization in general calls for adopting the
nonlocal continuum approach (Bazant ef al., 1984 ; Bazant, 1987). The latest form of this
approach. which is easily implemented in large finite element codes, is the nonlocal con-
tinuum with local strain (BaZant and Pijaudier-Cabot. 1987, 1988 ; Pijaudier-Cabot and
Bazant, 1987: Bazant and Lin, 1988). The nonlocal approach, however, does not seem
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Fig. 1. Ellipsoidal plug (inclusion) inserted into infinite elastic solid, and localization of strain into
an elliptic region.

amenable to closed-form expressions for the stability conditions and therefore will not be
pursued here.

Compared to the general nonlocal formulation, the use of a local continuum with the
simple imposition of a lower limit on the size of the localization zone, made in the crack
band model and adopted here, might seem too simplistic. The numerical results obtained
with this model have nevertheless been found to be rather close to the nonlocal solutions
(Bazant and Pijaudier-Cabot, 1988 ; Pijaudicr-Cabot and BaZant, 1987). This is a supporting
argument for the present approach.

CRITICAL STATE CONDITIONS FOR LOCALIZATION INTO ELLIPSOIDS

First we consider an ellipsoidal hole (Fig. Ib) in an infinitc homogencous elastic
continuum characterized by the elastic moduli matrix D,. We imagine to fit and glue into
this hole an ellipsoidal plug made of the same material. To fit, the plug must first be
deformed by a uniform strain, &° called the eigenstrain (note that an ellipsoid can be
transformed to any other ellipsoid by uniform strain). The eigenstrain is then imagined
unfrozen, which causes the plug with ellipsoidal hole to undergo strain increment & in
order to establish equilibrium with the surrounding infinite continuum. According to the
celebrated Eshelby’s theorem (Eshelby, 1957 ; Christensen, 1979 ; Mura, 1982), the strain
£ in the plug is uniform and is expressed as

57/ = Sukmﬁl?m )

in which §,,,, are the components of a fourth-rank tensor which depend only on the aspect
ratios u /a4, a,/a, of the principal axes of the cllipsoid, as well as on the elastic moduli.
Eshelby’s cocfficients S, are generally calculated as elliptic integrals (Mura, 1982). Always,
S.jim = Sjium = Sijms. but in general S, ., # Simy. For generally anisotropic material prop-
crties, the expressions for coefficients S, were derived by Kinoshita and Mura (1971) and
Lin and Mura (1973).

For convenience we rewrite eqn (1) in a matrix form:

KR [ Sun Suzn Sun: Stz Suas Sun] (&h)
£%: S22 S2222 Szzn: S2212 S1223 Saam e‘z’z
. [}
£33 S Siz22 Syt Siz Sy Sun 3‘3’3
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2652 281211 281222 281233 LZSIZIZ Lzslzn PAYPIY 2e),
- s s - ="
265, 283311 282322 252333 28312 :_252_32_3_4'252331 2¢3,
~25°J|J 28510 283122 285133 28502 282 :253131_ &25‘3’1J
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or
8= . Qu¢°9

in which &° and & are the column matrices of the eigenstrains and the equilibrium strains
in the ellipsoidal region. These column matrices (with the factors 2) are defined in such a
manner that "¢ is the correct expression for work density: 6 = (6,;, 023, 033, 0,5 G313,
03,)" = column matrix of stresses (superscript T denotes the transpose of a matrix). For
isotropic materials, the only nonzero elements of matrix Q of Eshelby’s coefficients are
those between the dashed lines marked in eqn (2).

According to Hooke's law, the stress in the ellipsoidal plug, ¢°, which is uniform, may
be expressed as ¢° = D, (¢°—&°). Upon substituting & = Q; 'e° [according to eqn (2)]. we
obtain

o° =D,(1-Q; )¢ 3

in which 1 = unit 6 x 6 matrix.

Consider now that an infinite continuum (without any hole) is in an initial equilibrium
state of uniform initial strain & and uniform initial stress o balanced by loads applied at
infinity. We seek the condition under which the initial state loses stability in a mode in
which the strain localizes into an ellipsoidal region (Fig. 1) without changing the prescribed
stresses (or the prescribed displacements) at infinity. If these variations can happen while
maintaining equilibrium, we have a state of neutral equilibrium which represents the limit
of stability, i.e. the critical state.

Due to localization, the strain and stress in the infinite continuum outside the ellipsoidal
region become nonuniform, while according to Eshelby’s thecorem the stress and strain
inside the cllipsoidal region will remain uniform. The strains can become discontinuous
across the ellipsoidal surfuce, as shown in Fig. 1d. On the other hand, the normal and shear
stress components acting on this surface must remain continuous in order to maintain
cquilibrium (while the normal stresses parallel to the cllipsoidal surface need not be con-
tinuous). If the ellipsoidal region undergoces strain-softening, the outside undergoes unload-
ing and therefore behaves clastically. According to eqn (3), the stress variations immediately
outside the ellipsoidal region are d6° = D, (1 —Q, ') é¢° in which D, must now be interpreted
as the matrix of elastic moduli for unloading, corresponding to the initial strain e. This
matrix is positive definite, and it is also isotropic if the material is isotropic. The uniform
stress variations inside the ellipsoidal region are da’ = D, d¢°, in which D, is the matrix of
incremental elastic moduli for further loading, corresponding to the initial strain e. This
matrix is not positive definite if the initial state e is in the strain-softening range, and
generally it must be assumed to be anisotropic. Equilibrium of the ellipsoidal region with
its exterior is maintained if d¢' = da°. From this we obtain the foilowing conditions of
neutral equilibrium (i.e. critical state) :

(D,—D,(1-Q, ")) de = 0. Q)]

It may be noted that for each point of ellipsoidal surface, at which the unit normal is n,
equilibrium requires only that da'n = do°n. However, due to the fact that this condition
must hold for various n, it is necessary that d¢’ = do°.

Equation (4) represents a system of six homogeneous lincar algebraic equations for
the six components of d&°. A nonzero solution, which represents the strain localization
instability mode, is possible if and only if the determinant of this equation system vanishes,
i.e.

Det Z=0, withZ=D,-D,(1-Q,"). (5)

This is the same result as obtained previously in BaZant (1988b), in which it was further
shown that the initial state of uniform strain & in unstable if matrix Z is not positive definite,
and is stable (with regard to the presently assumed localization mode) if this matrix is
positive definite. This result was obtained (Bazant, 1988b) by analyzing the sign of the
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second-order work o° W needed to produce an equilibrium localization increment. This is
the work that is done by the interfacial tractions applied on the ellipsoidal surface during
an equilibrium localization increment. It has been shown that &*W = 8" Z 8e*V/2 =
— T(AS),, where (AS),, is the increment of internally produced entropy of the body and
V = volume of the ellipsoidal region (see BaZzant, 1988c).

Due to internal friction, damage or other phenomena, matrix D,. and thus also Z, can
be nonsymmetric. In that case, the states for which Z is singular (det Z = 0) represent only
the states of neutral equilibrium but not the states at the limit of stability (i.e. limit of
positive definiteness of Z). Since 26> W/V = d¢° Z 6¢° = 6¢° 2 8¢ for any d¢° , where 2 =
{Z+1Z") = symmetric part of matrix Z. the limit of stable states is characterized by the
singularity of matrix Z (rather than Z). So. in the case of nonsymmetric matrix D,, one
needs to distingutsh between two kinds of critical states:

(1) the critical state of neutral equilibrium, which is characterized by singularity of
matrix Z. i.e. eqn (5) (in which case one eigenvalue of Z is zero) ;

(2) the critical state of stability limit (i.e. limit of positive definiteness of matrix Z),
which is characterized by singularity of symmetric matrix 2. i.e. detZ =0 (in
which case the smallest eigenvalue of Z is zero).

The second condition is more stringent than the first one, as numerical calculations
confirm. However. the numerical results in Figs 3-13 which follow show that. for non-
symmetric D, corresponding to a nonassociated Drucker-Prager material, the two critical
states are in most cases graphically indistinguishable. In those cases where graphical dis-
tinction is possible, the critical states of neutral equilibrium [eqn (5)] are shown as the
dashed curves and the critical states of stability limit as the solid curves.

The special case of the critical state condition in eqn (5) for associated or nonassociated
Drucker-Prager plasticity was previously derived by Rudnicki (1977).

CRITICAL STATE CONDITIONS FOR LOCALIZATION INTO PLANAR BAND

Consider now strain localization into an infinite planar band of thickness A that forms
inside an infinitc layer of thickness L (L 2 h). We choose axis x, to be normal to the
layer (Fig. 2). The layer is assumed to be initially in equilibrium in a state of uniform
(homogeneous) strain ¢, and stress o;; (the latin lower-case subscripts refer to Cartesian
coordinates x,, { = 1,2,3). We imagine the initial equilibrium state to be disturbed by
infinitesimal displacement variations du, whose gradients du,; have the values duj; and
duf; inside and outside the band, representing further loading or unloading, respectively.
These variations are uniform within the band and :lso outside the band, with discontinuous
jump across the surface of the band. As the boundary conditions, we consider that the
surface points of the layer are fixed during the incremental deformation, i.e. du; = 0 at the
surfaces x, = 0 and x, = L of the layer. The stress variations inside the band and outside
the band arc:

56’2:‘ = Dllljm (SC;,,, = Dl:l/m 6“;’.m = DllljZ ‘su'/.l (6)
X2
&’ @00 t. x'
b
o

Fig. 2. Planar localization band in a layer.
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00 = D'%jm O€jp = D'jjm Ot} m = D%,;3 01 2 Q)

in which again D}, and Dj;,, represent the incremental elastic moduli for further loading
and for unloading, corresponding to the initial strain &;. In writing eqns (6)-(7) we assume
that ouf, = dul, = 0, duly = dul; = 0. Without these conditions, there would be a slip
discontinuity between the inside and outside of the band.

Compatibility of deformations over the thickness of the layer requires that
héu, -+ (L—h) ouj » = 0 (j = 1,2,3). Expressing du’ , from this equation and taking into
account the condition of equilibrium at the band surfaces, do% = do'y; (i=1,2.3), we
obtain from eqns (6)—(7) the following condition of neutral equilibrium (critical state):

{ h u !
(D 22t L—__‘,‘lDzuz) ouj, =0, 8)

This represents a system of three homogeneous linear algebraic equations. A nonzero
solution exists if and only if

h
Det ZU - 0. Wlth Z'I = D‘Zij2+ L__‘:"‘i; ‘5,‘,’2. (9)
This critical state condition is again the same as obtained previously by Bazant (1988a),
in which it was also proven (by analysis of the second-order work) that the states for which
the matrix Z,; is not positive definite are unstable, and the states for which it is positive
definite are stable with regard to localization into a planar band. A special case of eqn (9)
is the condition for uniaxial or shear localization instability derived in 1974 by BaZant
(1976). e
The special case of eqn (9) for nonassociated Drucker-Prager plasticity without or
with vertex hardening and for infinite space (for which L — co and unloading D* plays no
role) was obtained by Rudnicki and Rice (1975) and by Rudnicki (1977).

BASIC PROPERTIES OF THE CRITICAL STATES

The critical state conditions in eqns (5) and (9) were discussed in detail by BaZant
(19884, b). Bricfly, according to eqn {5) which refers to an infinite continuum, the critical
state condition for localization into an ellipsoidal region is independent of the region’s size,
and depends only on the aspect ratios a,/a, and a,/a, of the ellipsoid. By contrast, according
to eqn (9), which applies to a finite body, the critical state condition does depend on the
size of the localization region, in this case the thickness £ of the band. The smaller the
thickness of the band, the more stringent is the stability condition, i.e. the smaller is the
magnitude of the strain-softening slope (tangent modulus) at which instability occurs. If
h — 0 were allowed, instability would always occur no later than at the peak stress point,
and so strain-softening could never be observed. The fact that it can be observed implies
that the thickness of the localization band, A, cannot be considered to be smaller than a
certain finite length. This length must be considered to be a material property. It is roughly
equal to the characteristic length { of the material (BaZant and Pijaudier-Cabot, 1989).

It is now proper to comment on the difference from Hill's (1962) condition of bifur-
cation of the equilibrium path, D%,,,du) ; = 0. This cquation coincides with Rudnicki and
Rice’s (1975) condition and is obtained from eqn (8) with L/h — co. As a bifurcation
condition, however, this cquation has been used [in contrast to eqn (8)] for a finite body of
any size. In that case there is no unloading in the body, same as for a layer of infinite
thickness. So the moduli D}, may be assumed to apply cverywhere, which means the
analysis can be made on the basis of a linear elastic body; see Hill's concept of a linear
comparison solid. It must be noted, however, that the eigenmode du!; obtained from the
equation DY%;;, duf, = 0 violates the boundary condition of fixed displacements at the layer
surface. Therefore, neutral equilibrium does not exist in the layer at the bifurcation state,
and the calculated eigenmode du?; cannot actually occur as an instability. This means that
the bifurcation must occur at increasing rather than constant boundary displacements. If
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the boundary displacement increase is_controlled, such a mode of deformation does not
represent stability loss, whose investigation is the objective of the present study. Rather,
the bifurcation state as well as the states immediately after the bifurcation are stable.

The foregoing discussion reflects the fact that one must distinguish between the con-
cepts of stable state and stable path, as shown in BaZant's (1988c) study. It was proven (for
the special case of uniaxial stress) that after the bifurcation point, which occurs according
to Hill (1962) or Rudnicki and Rice (1975) at the peak stress state, the strain must begin
to localize if the material is deformed in an equilibrium manner and if the tangential moduli
vary continuously as the layer is loaded in a displacement-controlled fashion. However, it
was also shown that if a nonlocalized uniform post-peak state is somehow reached, this
state is stable if eqn (8) is satisfied. Such a state can be reached in an equilibrium loading
process if the tangential moduli decrease discontinuously during loading (or drop suddenly
due to heating or other effects). Even for continuously varying moduli, such a state can be
reached dynamically, or if certain temporary restraints are applied. then also statically.

According to Bazant’s recent study (not yet published). the aforementioned distinction
between the stability limit and the bifurcation state exists also for finite ellipsoidal regions.

The critical state conditions in eqns (5) and (9) were examined in the previous works
(Bazant, 1988a.b) for the effect of material parameters. Consideration was limited to
incrementally isotropic tensors D, ... For the ellipsoidal localization regions, it was found
that the critical slope EY of the stress-strain diagram (<0) at which instability occurs
decreases in magnitude as the ellipsoid becomes flatter, more elongated in the x, and x,
directions, and becomes zero as the ellipsoid approaches an infinite band, i.e. for g, = o,
ay — . Rather large ratios a,/a; and a,/a,, however, are nceded to make |EY| small. For
example, for | £77] to become less than about 5% of the unloading slope E,, the aspect ratios
a,[a; and a,/a, need to exceed approximately 200. This is a surprisingly large value.

Such an clongated cllipsoidal region (whose thickness for concrete may not be less
than several times the aggregate size) often cannot be accommodated within a finite body
representing a typical conerete structure. This cllipsoidal region would have to be contained
within a larger region that is sutficiently remote from the surface of the body so that the
boundary conditions of infinite space around the ellipsoidal region would be approximately
applicable. Therefore, real structures should often be stable even for strain-softening slopes
whose magnitude is much larger than that predicted by the formula for the planar band
feqn (9) and also BaZant, 1976] using a characteristic length of the same order of magnitude
as the maximum size of inhomogeneity in the material,

Equations (5) and (9) can be used to study the influence of material parameters on the
localization instabilities for more realistic constitutive laws, for which the tensor D}, is
anisotropic. We will do so now for some plastic constitutive models.

PARAMETER STUDY FOR NONASSOCIATED DRUCKER-PRAGER PLASTICITY

The plastic stress—strain relations for isotropic materials have the form:
ds;; = 2G(de;; —del}), do” = 3K(de’ —de?) (10)

in which G, K = shear and bulk elastic moduli, &’ = £,/3 = volumetric strain, ¢, = ¢;,—
d,& = deviatoric strains (J; = Kronecker delta), 6" = 6,/3 = volumetric stress, 5, = 0,,—
d,,6° = deviatoric stresses, and &, ef, = volumetric and deviatoric plastic strains. The
plastic strain increments are given by the flow rule:

dg
P = di—2
def, =da 3o,y (1)

in which d4 is the plastic strain parameter and g is the plastic potential function. According
to the plasticity theory proposed by Drucker and Prager (see Fung, 1965 ; Chen, 1982), the
loading function and the plastic potential function are introduced as follows:
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flo, k) =T+yY(c")—x =0 (12)
9(0,x) = i+ (0")~x =0 (3)

in which ¥ = Ji* = (is;5,)"/? = stress intensity, J, = stress deviator, x = plastic hardening
parameter, and ¢, ¥ = empirical material functions of the volumetric stress. As usual, we
introduce the notations:

Ak
H=3. B=35. F =35, (14

in which H = plastic modulus, which is positive for hardening and negative for softening,
B’ = internal friction coefficient, and f§ = dilatancy ratio. The formulation satisfies the
normality rule if g = f, which means that ¢ = ¢ (and also § = #'). In this case, the material
is said to be associated. and otherwise nonassociated. H, § and §’ completely characterize
the incremental properties of Drucker—Prager plastic material. Traditionally H has been
considered positive (which describes plastic hardening, i.e. increase of the yield limit).
However, allowing it to be negative provides a convenient mode! for strain-softening,
describing degradation of the yield limit (a model of this type has been used in nonlocal
analysis of tunnel cave-in; see BaZant and Lin, 1988).

On the basis of eqns (10)-(14), it can be shown by a well-known procedure that the

tangential (incremental) moduli are
G G
(TT iy + Kﬂﬁl’l)( 1.': Skm + Kﬂ"skm)

L im = Dlim— . 15

o i G+KpR +H (1)
For nonassociated plasticity (f” # ) the tangential moduli for loading are nonsymmetric,
while for associated plasticity (= f) they are symmetric (with respect to interchanging i/
with km). The tangential moduli for unloading arc assumed to be the same as for initial
clastic loading, and so

;‘]km = (K—f’;G)(s,,(sk,,,-i-zG(s‘k ‘S/’m’ (16)

Although the material is assumed to be isotropic, the tensor of incremental moduli for
further loading {eqn (15)] exhibits stress-induced anisotropy.

After implementing the Drucker-Prager model in the computer program, it has first
been checked whether the results for the case a,/ay — o0, a3/a, -+ 20 agree with the solution
of Rudnicki and Rice (1975). They do.

The critical state condition in eqn (5) or (9) depends on the following four non-
dimensional material parameters

v, HIG, B, ' (17

in which v = Poisson’s ratio. In addition it depends on s,/7, i.e. the ratios of the initial
deviatoric stresses, and also on nondimensional geometric parameters such as L/h for
localization in a band, and a,/d,. a,/a; for localization in an ellipsoid. It does not depend
on the elastic modulus E, however, because the division of eqn (5) or (9) by E has no effect
on its eigenvalues,

The effect of the aforementioned parameters has been studied numerically. The eigen-
values of matrix Z in eqn (5) or matrix Z,, in eqn (9) have been calculated on a computer
for various combinations of the parameters in eqn (17). Using Newton’s iterative method,
material parameter combinations for which the smallest eigenvalue vanishes have been
found, and their plots arc shown in Figs 3-13. The initial stress states considered in these
diagrams were: uniaxial compression, biaxial compression, pure shear (5,; # 0, other
s,; = 0), and uniaxial tension. Poisson’s ratio has been considered as v = 0.18 for all the
calculations. As mentioned below eqn (5). for §” # f there is a difference between the critical
state of neutral equilibrium [det Z = 0, eqn (5)] and the critical state of stability limit (for
which the symmetric part of matrix Z is singular). Wherever graphically distinguishablc,
the former are shown as the dashed curves and the latter as the solid curves.
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infinite planar band
4k {uniaxial tension}

1 10 100
Uh
Fig. 3. Effect of size L/h on critical plastic hardening modulus A for infinite planar band in uniaxial
tension.

Figures 3-5 show the effect of the ratio of the layer thickness L to the band thickness
h on the valuc of the plastic modulus # at which the stability limit is reached. The states
below each curve are stable, the states above it are unstable, and the states on the curve are
critical. In Figs 3-S5 on top we see the curves for various values of #” when § = § (i.e. for
associated plasticity, for which the normality rulc is satisfied). In Figs 3-5 at the bottom
we sec the curves for various values of the internal friction cocefficient 8 when the dilatancy
ratio is fixed as ff = 1. As might have been expected, the thicker the given layer, the lower
is the magnitude of the plastic modulus H at which the layer becomes unstable.

Infinite planar band
{pure shear)

Fig. 4. Effect of size on critical H for infinite planar band in pure shear.
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Fig. 5. Effect of size on critical # for infinite planar band in biaxial compression.

To check the limit case L/ — |, we rewrite eqn (8) as [DY%;2 + DY%,2(L—h)/h) du 5 =
0. Since the equation D%, 6u ; = 0 has no nonzcro solution (D%, is positive-definite), we
conclude that at least some component of D%;;, must tend to oo to have the posssibility of
localization (nonzero du) ;). According to eqn (15) this occurs if and only if H — — 0.
Therefore, the curves in Figs 3-5 tend to 0o as L/h— 1.

Another check on the present general numerical solution is provided by the special
case of a band in an infinite space solved by Rudnicki and Rice (1975), which corresponds
to L/h — oo. Indeed, their eqn (16) yields numerically the same results as the present solution
for Lih - oo and the Drucker-Prager material. It should be noted that Rudnicki and

Elliptic cylinder
(uniaxial tension)

a,/a,

Fig. 6. Effect of ratio a,/a; of ellipsoidal axes on critical # for elliptic cylinders in uniaxial tension.
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6L Elliptic cylinder
{uniaxial compression} B=g =20

2

/ 0.5
0 1 ]

1 10 100
4

ay/a,

Fig. 7. Effect of axis ratio on critical ¥ for elliptic cylinders in uniaxial compression.

Rice considered the band to have arbitrary orientation and used among the critical state
conditions for all possible oricntations of axis x; the one which is most severe. In the present
study, on the other hand, the orientation of the band (axis x,) is fixed because the band of
thickness & must be parallel to the surfaces of the layer of given thickness L (except when
L — o).

The asymptotic values of the curves are interesting. For an infinitely thick layer (i.e.
infinite space), the strain localization instability does not occur at zero plastic modulus
(H — 0), as might have been expected, but at a finite negative value of the plastic modulus.

Ellipticcylinder
{pure shear}

3 —— B=p'=20

1 10 100

-H/G
T
Z

1 10 100
a,/az

Fig. 8. Effect of axis ratio on critical H for elliptic cylinders in pure shear.
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Fig. 9. Effect of axis ratio on critical # for elliptic cylinders in biaxial compression.

This means that strain-softening according to the Drucker-Prager plasticity model is stable
against localization into a planar band cven in an infinite space, provided that the plastic

modulus magnitude does not exceed a certain limit.

By contrast, in the previous work (BaZant, 1988a), which considered only incrementally
isotropic material propertics, the value of the softening modulus E, (which is analogous to
) always approaches zero for an infinitely thick layer. This implics that the strain-softening
cannot be stable in an infinitcly thick layer if the incremental modulus matrix is isotropic.
Apparently, strain-softening of plasticity type (i.e. degradation of the yield limit) is not as

destabilizing as some other forms of incremental material properties.

[ Prolate spheroid
{uniaxial tension)

S~ p=p'=20

—\“‘\ 1.0
—05
0.0 s i
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- =10
’ % XN
wz.o S\
S
- 1.0
\.—. 05 _ _ _ _ __ ___ .
M~_ 0;_0___ ________
] i
1 10 100
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Fig. 10. Effect of axis ratio on critical H for prolate spheroids in uniaxial tension.
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Fig. 11. Effect of axis ratio on critical # for prolate spheroids in uniaxial compression.
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Figures 6-9 show the dependence of the critical plastic modulus on the aspect ratio
ay/a, of a strain-softening cllipsoid degenerated into an infinite elliptic cylinder, i.c. ay/a, -
oo. This limiting casc is equivalent to localization in an infinitc planar band within an
infinite space. So the asymptotic values from Figs 6-9 and Figs 3-5 must coincide. They

indeed do, which serves as a check on the correctness of the calculations.

Again it might have been expected that for an infinite aspect ratio @,/a,, the critical
value of H should vanish. Surprisingly, it does not. The preceding comments apply here,

too.

Furthermore, it should be noted that generally very high aspect ratios of the ellipsoid

SAS 28:41.9

Proiate spheroid

{pure shear)
p=p =20
1.5
1.0
r 0.5
, 00 ‘
0 10 100
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Fig. 12. Effect of axis ratio on critical # for prolate spheroids in pure shear.
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Fig. 13. Effect of axis ratio on critical # for prolate spheroids in biaxial compression.

are needed to reduce the critical magnitudes of H near that for localization into a band in
a layer. This of course means, similar to the conclusion of the previous study (BaZant,
1988a, b}, that the localization stability limits for a planar band are not well applicable to
finite bodics representing typical structures.

Figures 10~13 show the dependence of the critical magnitudes of # on the aspect ratio
for prolate spheroids {4, = ;). As the aspect rutio tends to infinity, the prolate spheroid
approaches an infinite cylinder (a fiber). This is a different limiting casc than before, and
vanishing of the magnitude of H is expected. It is also noteworthy that the strain-softening
in prolate spheroids is much more stable than in elliptic cylinders, i.¢. the critical magnitudes
of H are much farger in Figs 10~13 than in Figs 6-9.

The eigenvectors of matrix Z or Z;; for the critical states for which the lowest cigenvalue
is zero have been calculated too. For several typical cases, these sigenvectors are shown
graphically in Fig. 14 for the volumetric {Renduli¢) sections of the loading surface, and at
bottom right also for the deviatoric cross-section (the values v = 0,18, " = 1.0 and uniaxial
tension have been assumed in these calculations). In plotting these eigenvectors, it is
understood that the axes of £” and the deviatoric plastic strain intensity 7 = (3efef)"* arc
superimposed on the axes of the volumetric stress and the deviatoric stress intensity. It is
interesting that in the volumetric cross-section these eigenvectors are always inclined away
from the normal to the loading function and toward the deviatoric axis, for all the dilatancy
ratios fi. These eigenvectors, of course, need not be normal to the loading function even if
normality (B == f) is assumed (it is the plastic strain incremental vector which must be
normal if g = f).

CONCLUSIONS

Based on the general stability conditions for localization of strain-softening into planar
bands and ellipsoidal domains, the critical values of the plastic modulus at stability limit
are calculated for nonassociated and associated Drucker-Prager plasticity. Also presented
is a direct derivation of the critical state conditions, which is simpler than the previous
derivation of the stability conditions. It is found that strain-localization instabilities of the
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Fig. 14, Eigenvectors at the critical states in the volumetric and deviatoric sections.

type considered do not occur for a certain range of material parameters even if strain-
softening takes place. This is true also for strain-localization into a planar band in an infinite
continuum, even though previous uniaxial analysis (BaZant, [976) as well as the multiaxial
analysis (BaZant, 1988a) indicated such situations to be always unstable for certain other
constitutive models,
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